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Global Environmental Situation

• Global temperature climbed by 0.5 °C

• CO2 concentrations have risen by 45 

ppm

• CO2 emissions have surged by 10 billion 

tonnes

• The global temperature is projected to 

climb by 1.5 °C between 2030 and 2052

• UK and the EU have set a goal of 

reaching net zero emissions by 2050. 



▪The industrial sector consumes 

roughly 2784.4 Terawatt hours 

per year

▪Five industrial sectors account 

for approximately 70%

▪ 15-20% of the industrial sector's 

overall heat consumption require 

steam between 100 and 200 °C.

EU’s Energy Consumption Per Sector



Waste-heat Opportunity in Europe

• 72% of the world's primary energy supply is 

dissipated throughout the conversion 

process.

• 29.8% of industrial consumption was 

converted to anergy in the form of exhaust or 

effluents.

• Over 4.1% of the EU's total energy 

consumption is released to the atmosphere 

through LT waste heat. 



The Properties of Selected Refrigerants 

Type Refrigerant

(ASHRAE)

Composition ODP GWP100yrs Tcrit [°C] Pcrit [bar] Cp/Cv NBP SG

HC R600 C4H10 0 4 152.01 37.96 1.105 0.0 A3

HC R601 C5H12 0 5 196.56 33.58 1.336 36.1 A3

HCFO R1224yd(Z) C3HF4CI 0.00023 1 156.00 33.30 1.098 14.0 A1

HCFO R1233zd(E) C3H2CIF3 0.00034 1 166.50 36.20 1.104 18.0 A1

HFC R245fa C3H3F5 0 1030 154.05 36.40 1.101 15.0 B1

HFC R365mfc C4H5F5 0 794 186.85 32.66 1.331 40.0 A2

HFO R1234ze(Z) C3F4H2 0 <10 150.10 35.30 1.119 9.8 A2L

HFO R1336mzz(Z) C4H2F6 0 2 171.30 29.00 1.001 33.4 A1



Refrigerants Under Consideration

• R1233zd(E)

• R245fa

• R1336mzz(Z)

• R365mfc

• R1224yd(Z)

• R1234ze(Z)

• R600

• R601
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Computing the Minimum Degree of Superheat

R245fa & R1233zd(E)

• 𝒔𝟏=𝒇(T=400K, x=1)

• 𝑻𝟏 = 𝒇(𝒔𝟏, 𝑷𝒆𝒗𝒂𝒑)

R1336mzz(Z) & R365mfc

• 𝒔𝒔𝒖𝒄 = ൣ

൧

𝒔𝒔𝒂𝒕,𝒄𝒐𝒏𝒅 − 𝒔𝒔𝒂𝒕,𝒆𝒗𝒂𝒑 ×

𝑭𝒂𝒅𝒋 + 𝒔𝒔𝒂𝒕,𝒆𝒗𝒂𝒑

• 𝑻𝒔𝒖𝒄 = 𝒇 𝒔𝒔𝒖𝒄, 𝑷𝒆𝒗𝒂𝒑

• 𝑻𝒎𝒊𝒏,𝒔𝒖𝒑 = 𝑻𝒔𝒖𝒄 − 𝑻𝒆𝒗𝒂𝒑



Mapping the Minimum Degree of Superheating

➢R1233zd(E), R1224yd(Z), R600, and 

R245fa are all examples of working 

fluids. With a superheat temperature 

requirement of less than 10 K.

➢The working fluids R1336mzz(Z), R601, 

and R 365mfc require a high degree of 

superheat prior to the compressor.

➢Due to the isentropic nature of 

R1234ze(Z), the required superheat 

degrees can form during the evaporation 

process.



Cycle Configurations
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Configs Continues
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Configs Continues

Double stage 
Cycle with flash 
tank and IHX
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Simulation Model of Sub-critical HTHP Cycle

• Using EES Software

• Components Modelling

• Cycle Modelling

• Mapping of The Minimum Degree Of Superheat

• Energy Balance & Energy Efficiency

• Entropy Balance 

• Exergy Destruction & Exergy Efficiency

• Heat Transfer Coefficient For Evaporator, Condenser And 
IHX ( Double-tube &BPHE)

• Results 



Numerical Results

                                        𝐓𝐞𝐯𝐚𝐩 = 𝟔𝟎 ℃ & 𝐓𝐜𝐨𝐧𝐝 = 𝟗𝟎 ℃,𝟏𝟑𝟎 ℃                                   𝐓𝐞𝐯𝐚𝐩 = 𝟕𝟎 ℃ & 𝐓𝐜𝐨𝐧𝐝 = 𝟏𝟎𝟎 ℃,𝟏𝟒𝟎 ℃   

Refrigerant 
 𝐓𝐝𝐢𝐬  

(℃) 

COP 

[-] 

   VHC 

(𝐤𝐉.𝐦−𝟑) 

𝐖𝐢𝐧 

(𝐤𝐖) 

𝐄𝐱𝐝𝐞𝐬𝐭 

(𝐤𝐖) 

𝛈𝐞𝐱 

(%) 

 𝐓𝐝𝐢𝐬  

(℃) 

COP 

  [-] 

   VHC 

(𝐤𝐉.𝐦−𝟑) 

𝐖𝐢𝐧 

(𝐤𝐖) 

𝐄𝐱𝐝𝐞𝐬𝐭 

(𝐤𝐖) 

𝛈𝐞𝐱 

(%) 

R1233zd(E) 
95.97 7.93 3316 1.93 1.03 62.50 104.30 7.82 4110 1.89 1.03 61.81 

137.30 3.08 2633 5.87 3.80 49.59 145.90 3.04 3105 5.81 3.74 47.80 

R245fa 
95.52 7.76 3925 1.98 1.06 61.10 103.90 7.58 4873 1.95 1.03 60.17 

134.90 2.83 2876 6.47 4.33 45.54 144.00 2.71 3288 6.54 4.40 42.77 

R1336mzz(Z) 
93.41 7.99 2273 1.95 1.04 62.45 103.50 7.86 2886 1.89 1.01 62.18 

140.90 3.13 1854 6.07 3.91 49.91 148.60 3.09 2203 5.88 3.66 48.75 

R365mfc 
93.56 8.09 1899 1.95 1.06 62.63 103.10 8.00 2439 1.89 1.01 62.52 

141.70 3.18 1566 6.08 3.96 50.75 149.40 3.14 1948 5.78 3.61 50.37 

R1224yd(Z) 
95.52 8.14 3602 1.95 1.03 61.71 103.70 8.1 4426 1.92 1.00 60.68 

134.70 2.92 2678 6.23 4.10 46.50 144.00 2.89 3061 6.32 4.18 43.77 

R600 
95.20 7.62 4633 1.94 1.01 61.66 103.40 7.61 5540 1.92 0.99 60.37 

133.70 2.80 3378 6.00 3.86 46.38 143.50 2.78 3692 6.27 4.13 42.67 

R601 
93.71 8.28 1935 1.90 1.02 63.70 103.5 8.16 2433 1.85 0.98 63.30 

141.40 3.31 1623 5.54 3.46 53.30 154.01 3.23 1991 5.32 3.20 52.80 

R1234ze(Z) 
98.24 7.88 3221 1.94 1.08 61.91 107.80 7.75 5177 1.91 1.05 61.02 

142.90 3.02 3174 4.74 4.02 47.88 152.40 3.00 3589 6.12 4.09 45.07 

 



Energetic Graphs



Exergy Destruction And Exergy Efficiency

• R601 followed by R1233zd(E) 

showed a higher exergetic 

efficiency

• The compressor, followed by the 

expansion valve, has the biggest 

loss.

• The losses in compression and 

expansion processes resulting from 

the dissipative forces.

• The losses in heat exchangers are a 

function of heat transfer 

temperature gradient



Model Validation

➢Experimental 

validation of the 

simulation model 

based on three 

statistical indices

➢A close regression 

line to the 

experimental 

points



Trans-critical HTHP Cycle



Trans-critical HTHP Cycle
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Trans-critical HTHP Cycle
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Energetic Results



Exergetic Results



• The design approach

• High glide temperature

• Compression process 

and lubrication 

Technical Challenges and Solution



➢Experimental 

validation of the 

simulation model 

based on three 

statistical indices

➢A close regression line 

to the experimental 

points

Model Validation
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Any Questions?
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